Multi-modal NDE Assisted Probabilistic Pipeline Performance Evaluation under Interactive Anomalies

Jules Kere, Ph.D. Student Qindan (Chindan) Huang, Associate Professor

Civil, Construction and Environmental Engineering Marquette University

> Presentation will start at <u>12:50pm ET</u> & be repeated at <u>1:20pm ET</u>

Background

- Oil and gas pipelines are subjected to various potential threats during their service lives
- Quantitative risk assessment has been often used to evaluate the pipeline integrity considering underlying uncertainties

<u>Exposure</u>

Goal of the overall project

- Goal: develop probabilistic pipeline performance evaluation framework based on multimodal NDE under interactive anomalies
- Representative anomalies: isolated & colony defects; corrosion defect & crack-like defect

Task 3: Development of probabilistic failure pressure models

Technical gap:

- Many existing models have been developed to predict the failure pressure of a pipeline containing corrosion and crack-like defects, which developed based on factor of safety
- Existing interaction rules have been shown wide variation & are deterministic
- Quantification of all relevant uncertainties

Objective: to develop failure prediction models suitable for risk assessment of pipelines containing the following defects:

- Isolated corrosion defects
- Colony of corrosion defects
- > Isolated crack-like defects
- Colony of crack-like defects

Data collection (isolated corrosion defect)

- A total of 401 different burst test results were collected from literature
- Additional data are generated by finite element (FE) analysis

- ✓ Abaqus Statics-General procedure is adopted
- Von Mises criteria is used to determine the failure pressure
- Corrosion defect is modeled as a rectangular shape
- Experimental burst test results from the literature are selected for the model validation

Data collection (isolated corrosion defect)

- A total of 32 additional test results were generated using FE analysis
- The new cases are designed to cover the regions where the data collected from literature is scarce

 $[\]bigcirc$ Experimental burst tests from literature

- × FE burst tests from literature
- * New FEM cases

Proposed prediction model formulation

- The proposed models were developed at three levels of pipe ultimate strength
- For each level, the proposed model follows this formulation:

Existing prediction models

Group	Model				
G1: Models based on NG-18	G1-1: ASME B31G Original				
	G1-2: Modified B31G				
	G1-3: SHELL92				
	G1-4: RPA				
	G1-5: RSTRENG Effective Area				
	G1-6: CSA Z662				
	G1-7: DNV RP-F101				
	G1-8: Fitnet FFS				
	G1-9: Phan et al Modified NG-18				
G2: Models based on Buckingham's π theorem	G2-10: Netto et al.				
	G2-11: Mustaffa & van Gelder				
	G2-12: Netto et al.				
	G2-13: Wang & Zarghamee				
	G2-14: Phan et al Modified - Netto et al.				
C3: PCOPPC models	G3-15: PCORRC				
	G3-16: Modified PCORRC				
G4: RAM PIPE Requal	G4-17: Original Ram Pipe Requal				
models	G4-18: Modified Ram Pipe Requal				
G5: Models using strain-	G5-19: Zhu & Leis				
hardening	G5-20: Zhu - X65				
G6: Other approaches	G6-21: Choi et al.				
	G6-22: Chen et al.				
	G6-23: CUP				
	G6-24: Phan et al Modified Gajdoš et al.				

Model selection

• Comparison of the best models

Level based on	Level 1		Le	evel 2	Level 3		
σ_u	$392 \leq \sigma_u < 600 \text{ MPa}$		$600 \leq \sigma_u$	< 700 MPa	$700 \le \sigma_u < 891 \text{ MPa}$		
Model Size	1	2	1	2	1	2	
Existing model selected	G6-24	G4-18, G6-24	G1-5	G1-2, G4-18	G1-3	G1-3, G4-18	
σ (MPa)	1.8442	1.8018	1.2253	1.0682	1.5616	1.3559	

- The model size describes the complexity of the model
- σ describes the accuracy of the model
- The final models are selected based on the balance between the accuracy and the complexity of the models

Developed models for isolated corrosion defect

• Final model formula and model parameter statistics

		Model Parameters						
Level based on σ_u	Formula	θ_0		$ heta_1$		θ_2		-
		Mean	Std	Mean	Std	Mean	Std	0
Level 1								
$392 \le \sigma_u \le 600$	$\theta_0 + \theta_1 \hat{y}_{24}$	1.8469	0.3180	1.0281	0.0209	-	-	1.8442
MPa								
Level 2								
$600 \le \sigma_u < 700$	$\theta_0 + \theta_1 \hat{y}_2 + \theta_2 \hat{y}_{18}$	-2.3322	0.3774	1.0751	0.0271	0.2978	0.0273	1.0682
MPa								
Level 3								
$700 \le \sigma_u < 891$	$\theta_0 + \theta_1 \hat{y}_3 + \theta_2 \hat{y}_{18}$	3.4948	0.6490	0.9381	0.0501	0.2420	0.0518	1.3559
MPa								

• For level 1:

$$P_{b} = 1.8469 + 1.0281 \cdot \frac{2t\sigma_{u}}{D} \left[1 - \frac{1.24678\left(\frac{d}{t}\right)}{1 + 12.6739\left(\frac{t}{l}\right)} \right]$$

$$\hat{y}_{24}$$

Comparison of performance of the proposed models with the existing models for three levels of σ_{μ}

- The mean square error (MSE) measures the combination of the prediction bias and variance
- The proposed models (PM) have the lowest MSE for all the levels of σ_u
- Existing model G5-19 developed by Zhu and Leis has shown to be the best model among the existing models considered for all the levels of σ_u

Pressure predicted by the proposed models vs. the observed pressure (80%)

- If the prediction is perfect, the dots should line up on the 1:1 line
- The smaller the scatter of the dots is, the more accurate the model is
- The proposed models show to be unbiased and accurate, since scatter is small and evenly distributed around 1:1 line

Pressure predicted by the proposed models and best existing model vs. the validation data (20% of data)

x Best existing model

- For each level, most of the proposed model predictions are within the mean \pm 1 standard deviation of the model error
- The scatter of the predictions from the best existing model shows only unbiased for Level 1, slightly overestimation for Level 2, and underestimation for Level 3
- The prediction from the best existing model is very similar to the proposed model for Level 1, but the proposed model shows better accuracy for Level 2 and particularly Level 3.

A case study

Distribution parameters of random variables used in the reliability analysis								
Random variable	Distribution	COV (%)	Mean			Standard deviation		
			Level 1	Level 2	Level 3	Level 1	Level 2	Level 3
Outside diameter of pipe, D (mm)	Normal	5	324 16.2					
Nominal wall thickness, <i>t</i> (mm)	Normal	5	6			0.3		
Defect depth, <i>d</i> (mm)	Normal	5						
Defect length, <i>I</i> (mm)	Normal	5	100 or 350			5 or 17.5		
Yield strength, $\sigma_{\!y}({ m MPa})$	Normal	3	357	534	589	10.71	16.02	17.67
Ultimate strength, $\sigma_{\!u}$ (MPa)	Normal	3	458	661	731	13.74	19.83	21.93
Operating Pressure, P_p (MPa)	Normal	5	7.61	11.39	12.57	0.38	0.57	0.63
Model error in the proposed model (MPa)	Normal	-	0	0	0	1.84	1.07	1.36
Model error in the best existing model (MPa)	Normal	-	0.39	-0.53	0.90	2.23	1.39	2.45

Defect depth-dependent reliability index based on the proposed model and best existing model for level 3

- The reliability index decreases with the increase of the defect depth for a given defect length
- The reliability index is smaller for longer defect length
- The reliability based on the proposed model is higher than the one based on the best existing model, especially for smaller *d*/*t*.

In-Progress: models for colony corrosion defect

- Data collection from literature
- Additional data using FEM with various spacing
- Comparison of existing models (e.g., RSTRENG effective area, DNV RP-F101 for interacting defects, and MTI method)
- A new approach is proposed by modifying the effective area of colony of defects of the best existing model (MTI method)

Defect i, i=1,2

MTI effective area

New approach effective area

In-Progress: models for isolated crack-like defect

- Literature review
- Data collection from literature
- Comparison of existing models (e.g., Ln-Sec equation, API RP 579, BS 7910, and Corlas)

Thank you!

Jules Kere: <u>kiswendsidajules.kere@marquette.edu</u> Qindan (Chindan) Huang: <u>qindan.huang@marquette.edu</u>

> Presentation will start at <u>12:50pm ET</u> & be repeated at <u>1:20pm ET</u>

