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1. Background

o Corrosion of oil/gas metallic pipelines
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Fig. a Pipeline incidents in the United State?

Fig. b Pipeline spill?

Q%RFEHU?\I/?\&EC)R-F ’SAiTY [1]. Photos from http://projects.propublica.org/pipelines/

[2] http://www.occupy.com/article/20000-barrels-spilled-north-dakota-pipeline-rupture?qt-article_tabs=2



1. Background

o Corrosion of oil/gas metallic pipelines
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Table 1. Pipeline accidents in recent years at North Dakota (Pan et al., 20174).

Accident Location Year Loss
Pipeline spill Tioga 2014 One gas pipeline exploded and burned
865,000 gallons (one of the largest to happen onshore in

Pipeline spill Tioga 2013 U.S. history)

Pipeline spill Sargent County 2011 Spilling 400 barrels of crude oil

Pipeline spill Neche 2010 Releasing 3,784 barrels of crude oil

Pipeline spill Mantador 2004 Residents were evacuated, and a rail line was shut down
Pipeline spill Barnes County 2003 Releasing 9,000 barrels of propane

Pipeline Bottineau 2001 1.1 million US gallons (4,200 m?) of gasoline burned
ruptured

Pipeline spill Harwood 2001 Spilling 40 barrels of fuel oil

[1]. Photos from http://www.flickriver.com/photos/59127492@N07/5416927808/

NORTH DAKOTA [2]. Photos from http://www.icorr.org/news/180/index.phtml

STATE UNIVERSITY [3]. Photos from https:/sites.google.com/site/metropolitanforensics/root-causes-andcontributing-factors-of-gas-and-liquid-pipeline-failures
[4]. Pan, H.; Ge, R.; Xingyu, W.; Jinhui, W.; Na, G.; Zhibin, L. Embedded Wireless Passive Sensor Networks for Health Monitoring of 5
Welded Joints in Onshore Metallic Pipelines. In ASCE 2017 Pipelines; 2017.



1. Background

o Challenges:
» Detection: Sensing and assessing corrosion-induced damage (early-stage, data process of
collected data with high variances, e.g., noise interference for signals)

» Prevention/Mitigation: Conventional coating systems (low-damage tolerance, inaccessible
for repair)
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2. Proposed Concept

o Solutions: I Failure Mechanism Removal of corrosive agents

£
Corrosion of pipeline
systems

Mitigation and <‘:— 01 Monitoring and
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3. Case study— New nanocomposite coatings

o Performance in terms of corrosion resistance:
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3. Case study— New nanocomposite coatings

tensile:

o Performance in terms of mechanical-
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3. Case study— New nanocomposite coatings

o Performance in terms of mechanical-abrasion resistance:

Mass Loss (mg)
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Fig. a Mass loss of nanocomposites
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3. Case study— New nanocomposite coatings

Ascending Preload Descending Detached

o Performance in terms of wettability:

Preload Descending Detached

Ascending

Fig. a Picture of water (blue) and hexadecane (red) on new coating

Fig. b Water droplet ascending and descending of
(@) neat epoxy, (b) high-performance coating
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3. Case study— Machine-learning guided damage detection

o Machine learning guided damage detection:

Features of guided wave to
indicate the corrosion
degradation

Classification |

Time: 5E-5s . \
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3. Case study— Machine-learning guided damage detection

o Machine learning guided damage detection:

-Noise interference
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3. Case study— Machine-learning guided damage detection

o Machine learning guided damage detection:

-Material discontinuity

Weldment Notch-type damage
B ¥ % C D E
14mm ¢ N N | N = 1
T 57mm 200 mm 200 mm 200 mm 200 mm
< 914 mm >

(a) Plate with a butt welded joint at point B and a 6-mm long notch-type damage at point C.

ooy Weldment Boundary
g f}l\t reflection Table 1, Comparison of accuracy in two cases
S 0000 ANy A Noise level 120 dB 110 4B 100 4B 90 dB 80 dB
< v Without weldment 100.00% 100.00% 100.00% 100.00% 56.4%

Damage
o001 | reflection With weldment 100.00% 100.00% 80.00% 73.10% 65.71%
0.0000 D.DIDDI D.DIDDE D.DEDB D.DIDD4 0.000:
Time(s)

(b) Signal collected from point A



3. Case study— Machine-learning guided damage detection

o Machine learning guided damage detection:
-Shallow learning

Method Classification by physics-based Classification by SVM
No feature selection Feature selection
Features Amp Frq RMS Physics
based All Features Selected features
Features
120dB 100.00% | 100.00% 100.00% 100.00% 100.00% 100.00%%
110dB 97.71% 100.00% 98.86% 98.86% 98.86% 100.00%
Noise level 100dB 81.14% 86.29% 84.00% 92.00% 84.00% 95.43%
90dB 44.00% 64.00% 72.00% 80.00% 72.00% 86.29%
80dB 19.43% 34.86% 39.43% 53.71% 39.43% 56.00%

-Deep learning

100 dB 90 dB 80dB 70 dB 60 dB
SVM_WT 98.5% 84.1% 57.3% 31.4% 26.5%
SYM_PH 100% 91.1% 64.9% 42.2% 26.5%
SVM_ALL 100% 100% 100% 84.00% 46.4%
SVM_FS 100% 100% 98.4% 77.9% 49.9%
CNN 100% 100%o 100%o 88.75% 62.5% 15

Resnet 100% 100% 100% 93.19% 67.69%




3. Case study— Removal of corrosive agents

o 3D printing lattices for water/oil separation:

250

Strain

[Angle - 102.24 degrees
Base Width = 1,36 16mm
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3. Case study— Removal of corrosive agents

o 3D printing lattices for water/oil separation:
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3. Case study— Removal of corrosive agents

o 3D printing lattices for water/oil separation:
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4. Summary

The projects aimed to address corrosion issues experienced in pipelines from different
perspectives.

The proposed nanocomposite coatings with high damage tolerance as well as superior
corrosion resistance as one solution for pipeline corrosion control and prevention

The proposed machine learning guided framework for early-stage corrosion-induced
damage detection for pipelines

The proposed approach for removal of corrosive agents (e.g., water) for pipeline

corrosion prevention
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